Robustness of amorphous silicon during the initial lithiation/delithiation cycle

نویسندگان

  • Lucas A. Berla
  • Seok Woo Lee
  • Ill Ryu
  • Yi Cui
  • William D. Nix
چکیده

Recent research on the electrochemical lithiation of amorphous silicon nanoparticles shows that amorphous silicon is more fracture resistant than crystalline silicon during lithiation. Nanoparticles of amorphous silicon can be lithiated and delithiated without any fracture at all. To fully exploit the potential of using amorphous silicon as electrodes for lithium ion batteries it is important to determine if larger, micron-sized, amorphous silicon structures can be lithiated and delithiated without fracture. Here we study the morphologies of initially amorphous silicon micropillars (w2.3 mm tall) both before and after electrochemical lithiation and delithiation. No internal or external cohesive cracking is detected in lithiated pillars for any of the pillar sizes studied. Delithiated pillars exhibit some delamination at the interface between the pillar and the underlying nickel substrate. For larger diameter pillars, the initiated interfacial crack is driven upward into the delithiated pillar as the crack propagates radially inward. However, no cohesive fracture unrelated to interfacial cracking is seen in even the largest delithiated pillars. Finite element modeling provides support for the observation that the cohesive fracture resistance of amorphous silicon micropillars is representative of the fracture resistance of amorphous silicon microparticles of comparable dimensions. 2014 Elsevier B.V. All rights reserved.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The effect of metallic coatings and crystallinity on the volume expansion of silicon during electrochemical lithiation/delithiation

icle as: M.T. McDow hiation/delithiatio Abstract Applying surface coatings to alloying anodes for Li-ion batteries can improve rate capability and cycle life, but it is unclear how this second phase affects mechanical deformation during electrochemical reaction. Here, in-situ transmission electron microscopy is employed to investigate the electrochemical lithiation and delithiation of silicon n...

متن کامل

Reversible nanopore formation in Ge nanowires during lithiation-delithiation cycling: an in situ transmission electron microscopy study.

Retaining the high energy density of rechargeable lithium ion batteries depends critically on the cycle stability of microstructures in electrode materials. We report the reversible formation of nanoporosity in individual germanium nanowires during lithiation-delithiation cycling by in situ transmission electron microscopy. Upon lithium insertion, the initial crystalline Ge underwent a two-step...

متن کامل

In situ TEM of two-phase lithiation of amorphous silicon nanospheres.

To utilize high-capacity Si anodes in next-generation Li-ion batteries, the physical and chemical transformations during the Li-Si reaction must be better understood. Here, in situ transmission electron microscopy is used to observe the lithiation/delithiation of amorphous Si nanospheres; amorphous Si is an important anode material that has been less studied than crystalline Si. Unexpectedly, t...

متن کامل

Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: understanding the (de)lithiation mechanisms.

Lithium ion batteries (LIBs) containing silicon negative electrodes have been the subject of much recent investigation, because of the extremely large gravimetric and volumetric capacities of silicon. The crystalline-to-amorphous phase transition that occurs on electrochemical Li insertion into crystalline Si, during the first discharge, hinders attempts to link the structure in these systems w...

متن کامل

Understanding Phase Transformation in Crystalline Ge Anodes for Li-Ion Batteries

Lithium-ion batteries using germanium as the anode material are attracting attention because of their high-capacity, higher conductivity, and lithium-ion diffusivity relative to silicon. Despite recent studies on Ge electrode reactions, there is still limited understanding of the reaction mechanisms governing crystalline Ge and the transformations into intermediate amorphous phases that form du...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014